Radiation transport calculations for cosmic radiation

ICRP Symposium on the International System of Radiological Protection

October 24-26, 2011 – Bethesda, MD, USA

Akira Endo and Tatsuhiko Sato* ICRP Committee 2 & Task Group 4 (DOCAL) * Task Group 67 (Radiation Protection in Space)

Introduction

The presentation reviews Chapters 5 & 6 of the draft by TG67

"Assessment of Radiation Exposure of Astronauts in Space"

- Chapter 5: Radiation fields inside spacecrafts and on planetary surfaces
- Chapter 6: Radiation field and doses in human body

Main points of the presentation :

- Physics and computer codes for cosmic radiation transport
- Application to space radiation protection
 - Assessment of radiation environment in spacecrafts and performance of shielding materials
 - Analysis of organ doses using the ICRP reference phantoms, and a phantom/spacecraft model

Overview of interactions of cosmic radiation

Primary radiation in space • proton, electron, HZE nuclei

Secondary radiation in spacecraft and human body

- Nucleon (proton, neutron) Evaporation, knockout
- Light particles (d, t, h, α) Evaporation, knockout, pickup
- Heavy ions **Projectile & Target fragments**
- Pion, Kaon, Anti-nucleon Projectile energy > 500 MeV/u Various particles of wide energy \rightarrow Various LETs

Computer codes for cosmic radiation transport

- HZETRN (NASA)
- 1-D deterministic code
- Used for space radiation protection
- FLUKA (CERN, INFN)
- **GEANT4** (Worldwide collabo.)
- HETC-HEDS (ORNL)
- MCNPX (LANL)
- PHITS (JAEA, RIST, others)
- **SHIELD-HIT** (INR)

- 3-D Monte Carlo codes
- Various applications
 - Reactor and accelerator physics & engineering
 - Detector design
 - Radiotherapy & dosimetry
 - Radiobiology
 - Space application

Physics models used in PHITS PHITS: Particle and Heavy Ion Transport code System

	nucleus	proton	hadrons π, μ, Κ, Σ	neutron	photon electron	
Energy		200 GeV	200 GeV	200 GeV		
піgri	100 GeV/u	\leftarrow JAM , Hadron cascade model \rightarrow		model →	100 GeV	
T	JQMD	(JQMD) (Portini)	(JQMD)	(JQMD) (Portini)	in progress	
		(Bertini)				
	← GEIV	1 GeV				
	ϵ SPAR, A	TIMA , Ionizati	20 MeV	transport		
	10 MeV/u			transport	using nuclear data	
		1 MeV	1 MeV	using		
	Only transpo	1 keV				
			+	Event generato	r Microdosim	etric
Low				thermal	Tunction	1
JQMD: JAERI Quantum Molecular Dynamics model JAM: Jet AA Microscopic transport model 5						5

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

JAM (Jet AA Microscopic) transport model

JAM is a hadronic cascade model, which treats all established hadronic states, including resonances with explicit spin and isospin, as well as their anti-particles.

Radiation environment simulation and validation

NCRP153 (2006)

Mission	Date	Altitude (km)	Shielding	Dose equivalent rate (mSv/d)	
				Measurement	Calculation
STS-57	1993	298	Payload bay	0.442	0.434
Mir-18	1995	390		0.461	0.526
STS-81	1997	400	Poly 12 inches	0.290	0.297
STS-89	1998	393	Al 3 inches	0.445	0.488

Geometry configuration	CPU-days*
Columbus without ISS geometry	68
Columbus with ISS geometry (shown in the above left figure)	190 (for proton) 20 (for neutron)

* Using AMD Athlon 2000+ processors

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Assessment of shielding performance

Dose calculation

ICRP/ICRU adult male and female reference computational phantoms (ICRP110)

- 3-dimensional representation of human anatomy
 - Constructed from CT data of real persons
 - Reference anatomical values of ICRP89

Coupled to the PHITS code

- Analysis of radiation field in the body
- Calculation of dose conversion coefficients and quality factors

Protection quantities in space: Mean absorbed dose & Dose equivalent

Mean absorbed dose:
$$D_{T,R} = \int_E d_{T,R}(E) \frac{a \Phi_R}{dE} dE$$

 $d_{T,R}(E)$: fluence-to-absorbed dose conversion coefficients for the organ T $d\Phi_R/dE$: spectral fluence of particles of type R incident on the body

Radiation environment in space consists of v ous components of various LETs $\Rightarrow Q(L)$ is better v or w_R

Equivalent dose:

$$H_T = \sum_{R} \boldsymbol{w}_{\boldsymbol{R}} D_{T,R}$$

 $w_R = 20$ for heavy ions in ICRP103

Dose equivalent: $H_T = \sum_{P} \boldsymbol{Q}_{T,R} D_{T,R}$

 $Q_{T,R}$: quality factor based on Q(L)

1.7

Space organizations (e.g. NASA, ESA) have been adopting this approach

Absorbed dose and Dose equivalent

D_T and H_T increase with the atomic number of incident particle
Shapes of energy-dependence curves are different between D_T and H_T

Mean quality factor

Dose calculation using a phantom/spacecraft model

Measurement in the STS-91

Yasuda (2000)

		046116114 (2000)			
Organ/	Dose equivalent (mSv)				
Tissue	Measurement	HZETRN/QMSFRG			
Skin	4.5 ± 0.05	4.7			
Thyroid	$\textbf{4.0} \pm \textbf{0.21}$	4.0			
Bone surface	$\textbf{5.2}\pm\textbf{0.22}$	4.0			
Esophagus	$\textbf{3.4}\pm\textbf{0.49}$	3.7			
Lung	$\textbf{4.4} \pm \textbf{0.76}$	3.8			
Stomach	4.3 ± 0.94	3.6			
Liver	$\textbf{4.0}\pm\textbf{0.51}$	3.7			
Bone marrow	$\textbf{3.4}\pm\textbf{0.40}$	3.9			
Colon	$\textbf{3.6} \pm \textbf{0.42}$	3.9			
Bladder	$\textbf{3.6}\pm\textbf{0.24}$	3.5			
Gonad	$\textbf{4.7} \pm \textbf{0.71}$	3.9			
Chest	$\textbf{4.5}\pm\textbf{0.11}$	4.5			

NTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Cucinotta (2008)

Concluding remarks

Radiation transport technique is an essential tool for space radiation protection

- Assessment of radiation environment
- Shielding design & calculation
- Dose assessment and instrument development
 - Absorbed dose conversion coefficients and quality factors in organs calculated using the ICRP phantoms are presented in the Annex

Outlook

- Validation and improvement of computer codes and models
 - Comparison with experiment, intercomparison between codes
- Development of methods to estimate biological effect
 - Combination of macroscopic radiation transport method and microdosimetric model, e.g., track structure-based model

Acknowledgement

The authors and the Task Group 67 (Radiation Protection in Space) thank

- Task Group DOCAL (Chair: Wesley Bolch)
- Radiation Transport Subgroup (Leader: Nina Petoussi-Henss)

for their support in calculating dose conversion coefficients using the ICRP reference phantoms.

Thank you for your attention www.icrp.org

